Mutation detail:
| Mutation site | H69del/V70del |
| Virus | SARS-CoV-2 |
| Mutation level |
Amino acid level |
| Gene/protein/region type | S |
| Gene ID | 43740568 |
| Country | - |
| Mutation type |
nonsynonymous mutation |
| Genotype/subtype/clade | - |
| Sample |
Human |
| Variants | Alpha |
| Viral reference sequence | NC_045512.2 |
| Drug/antibody/vaccine | - |
| Transmissibility |
- |
| Transmission mechanism | - |
| Pathogenicity |
- |
| Pathogenicity mechanism | - |
| Immune escape mutation | - |
| Immune escape mechanism | - |
| RT-PCR primers probes | - |
Protein detail:
| Protein name | Spike glycoprotein |
| Uniprot protein ID | P0DTC2 |
| Protein length | 1273 amino acids |
| Protein description | Spike protein is one of the structural proteins of SARS-CoV-2. The monomeric protein consists of one large ectodomain, a single-pass transmembrane anchor, and a short intracellular tail at C-terminus. It encompasses 22 glycosylation sites. S protein cleaves into two subunits namely S1 and S2 following receptor recognition. Receptor Binding Domain (RBD) in S1 subunit plays a major role in ACE2 receptor binding. |
Literature information:
| Pubmed ID | 33603204 |
| Clinical information | No |
| Disease | - |
| Published year | 2021 |
| Journal | NATURE BIOTECHNOLOGY |
| Title | Could mutations of SARS-CoV-2 suppress diagnostic detection? |
| Author | Carl A Ascoli |
| Evidence | In terms of the emerging SARS-CoV-2 strains - N501Y in South Africa9, H69/V701,2, D796H3 and D614G4 - none represent mutations that would hinder the ability of a diagnostic polyclonal antibodies to N protein to detect SARS-CoV-2. Even the strain B.1.1.7 (Fig. 1), which was identified to have 17 mutations, would be detected using such antibodies. |