Mutation detail:
| Mutation site | K444S |
| Virus | SARS-CoV-2 |
| Mutation level |
Amino acid level |
| Gene/protein/region type | S |
| Gene ID | 43740568 |
| Country | - |
| Mutation type |
nonsynonymous mutation |
| Genotype/subtype/clade | - |
| Sample |
cell line |
| Variants | - |
| Viral reference sequence | MN908947.3 |
| Drug/antibody/vaccine | mAb_CoV2-06-resistant,mAb_CoV2-14/mAb_CoV2-06 |
| Transmissibility |
hinder |
| Transmission mechanism | Single-site mutations of K444R, K444S, E484A, and F486S reduced the sCoV2RBD/ACE2 binding affinities to 56%, 61%, 79%, and 6% of the wild-type (WT), respectively. |
| Pathogenicity |
- |
| Pathogenicity mechanism | - |
| Immune escape mutation | - |
| Immune escape mechanism | - |
| RT-PCR primers probes | - |
Protein detail:
| Protein name | Spike glycoprotein |
| Uniprot protein ID | P0DTC2 |
| Protein length | 1273 amino acids |
| Protein description | Spike protein is one of the structural proteins of SARS-CoV-2. The monomeric protein consists of one large ectodomain, a single-pass transmembrane anchor, and a short intracellular tail at C-terminus. It encompasses 22 glycosylation sites. S protein cleaves into two subunits namely S1 and S2 following receptor recognition. Receptor Binding Domain (RBD) in S1 subunit plays a major role in ACE2 receptor binding. |
Literature information:
| Pubmed ID | 33473140 |
| Clinical information | No |
| Disease | - |
| Published year | 2021 |
| Journal | Nature Communications |
| Title | Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape |
| Author | Zhiqiang Ku, Xuping Xie, Edgar Davidson, Xiaohua Ye, Hang Su |
| Evidence | We reasoned that simultaneous mutations on the two distinct binding sites of CoV2-06 and CoV2-14, which are required for virus to escape neutralization by the cocktail, would be more constrained than mutations on the binding sites of individual mAbs. To test this hypothesis, we generated eight sCoV2-RBD mutant proteins, four with individual mutations of single binding sites (K444R, K444S, E484A, and F486S) and four with simultaneous mutations of both binding sites (K444R+E484A, K444R+F486S, K444S+E484A, and K444S+F486S) (Supplementary Fig. 5a). |