Mutation detail:
| Mutation site | L878S |
| Virus | SARS-CoV-2 |
| Mutation level |
Amino acid level |
| Gene/protein/region type | S |
| Gene ID | 43740568 |
| Country | Brazil |
| Mutation type |
nonsynonymous mutation |
| Genotype/subtype/clade | - |
| Sample |
Human |
| Variants | - |
| Viral reference sequence | NC_045512.2 |
| Drug/antibody/vaccine | - |
| Transmissibility |
- |
| Transmission mechanism | - |
| Pathogenicity |
- |
| Pathogenicity mechanism | - |
| Immune escape mutation | - |
| Immune escape mechanism | - |
| RT-PCR primers probes | - |
Protein detail:
| Protein name | Spike glycoprotein |
| Uniprot protein ID | P0DTC2 |
| Protein length | 1273 amino acids |
| Protein description | Spike protein is one of the structural proteins of SARS-CoV-2. The monomeric protein consists of one large ectodomain, a single-pass transmembrane anchor, and a short intracellular tail at C-terminus. It encompasses 22 glycosylation sites. S protein cleaves into two subunits namely S1 and S2 following receptor recognition. Receptor Binding Domain (RBD) in S1 subunit plays a major role in ACE2 receptor binding. |
Literature information:
| Pubmed ID | 34099808 |
| Clinical information | No |
| Disease | - |
| Published year | 2021 |
| Journal | Scientific Reports |
| Title | SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions |
| Author | Luis Fernando Saraiva Macedo Timmers,Julia Vasconcellos Peixoto,Rodrigo Gay Ducati,Jose Fernando Ruggiero Bachega,Leandro de Mattos Pereira |
| Evidence | We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells.(Supplementary Information) |