Mutation detail:
| Mutation site | T372A |
| Virus | SARS-CoV-2 |
| Mutation level |
Amino acid level |
| Gene/protein/region type | S |
| Gene ID | 43740568 |
| Country | - |
| Mutation type |
nonsynonymous mutation |
| Genotype/subtype/clade | - |
| Sample |
cell line |
| Variants | - |
| Viral reference sequence | NC_045512.2 |
| Drug/antibody/vaccine | - |
| Transmissibility |
promote |
| Transmission mechanism | As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. |
| Pathogenicity |
- |
| Pathogenicity mechanism | - |
| Immune escape mutation | - |
| Immune escape mechanism | - |
| RT-PCR primers probes | - |
Protein detail:
| Protein name | Spike glycoprotein |
| Uniprot protein ID | P0DTC2 |
| Protein length | 1273 amino acids |
| Protein description | Spike protein is one of the structural proteins of SARS-CoV-2. The monomeric protein consists of one large ectodomain, a single-pass transmembrane anchor, and a short intracellular tail at C-terminus. It encompasses 22 glycosylation sites. S protein cleaves into two subunits namely S1 and S2 following receptor recognition. Receptor Binding Domain (RBD) in S1 subunit plays a major role in ACE2 receptor binding. |
Literature information:
| Pubmed ID | 34289344 |
| Clinical information | No |
| Disease | - |
| Published year | 2021 |
| Journal | cell |
| Title | A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation |
| Author | Lin Kang, Guijuan He, Amanda K. Sharp, Xiaofeng Wang, Anne M. Brown |
| Evidence | As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. We engineered the reversion mutant (A372T) and found that A372 (wild-type [WT]-SARS-CoV-2) enhanced replication in human lung cells relative to its putative ancestral variant (T372), an effect that was 20 times greater than the well-known D614G mutation. Our findings suggest that this mutation likely contributed to SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-human transmission. |