Mutation detail:
| Mutation site | W152L/E484K/G769V |
| Virus | SARS-CoV-2 |
| Mutation level |
Amino acid level |
| Gene/protein/region type | S |
| Gene ID | 43740568 |
| Country | Japan |
| Mutation type |
nonsynonymous mutation |
| Genotype/subtype/clade | - |
| Sample |
Human |
| Variants | - |
| Viral reference sequence | NC_045512.2 |
| Drug/antibody/vaccine | - |
| Transmissibility |
- |
| Transmission mechanism | - |
| Pathogenicity |
- |
| Pathogenicity mechanism | - |
| Immune escape mutation | - |
| Immune escape mechanism | - |
| RT-PCR primers probes | - |
Protein detail:
| Protein name | Spike glycoprotein |
| Uniprot protein ID | P0DTC2 |
| Protein length | 1273 amino acids |
| Protein description | Spike protein is one of the structural proteins of SARS-CoV-2. The monomeric protein consists of one large ectodomain, a single-pass transmembrane anchor, and a short intracellular tail at C-terminus. It encompasses 22 glycosylation sites. S protein cleaves into two subunits namely S1 and S2 following receptor recognition. Receptor Binding Domain (RBD) in S1 subunit plays a major role in ACE2 receptor binding. |
Literature information:
| Pubmed ID | 34097716 |
| Clinical information | No |
| Disease | - |
| Published year | 2021 |
| Journal | PLoS Pathogens |
| Title | Detection of R.1 lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with spike protein W152L/E484K/G769V mutations in Japan |
| Author | Yosuke Hirotsu,Masao Omata |
| Evidence | Our sequencing analysis of the SARS-CoV-2 isolates from the three family members identified the same 21 mutations in each isolate; these comprised 13 missense, six synonymous, and two intergenic variants. Among the missense mutations, four were in the spike protein (W152L, E484K, D614G, and G769V), four were in ORF1ab (T4692I, N6301S, L6337M, and I6525T), one was in the membrane protein (F28L), and four were in the nucleocapsid protein (S187L, R203K, G204R, and Q418H). |