Mutation detail:
| Mutation site | Y453F |
| Virus | SARS-CoV-2 |
| Mutation level |
Amino acid level |
| Gene/protein/region type | S |
| Gene ID | 43740568 |
| Country | Denmark |
| Mutation type |
nonsynonymous mutation |
| Genotype/subtype/clade | - |
| Sample |
cell line |
| Variants | - |
| Viral reference sequence | NC 045512.2 |
| Drug/antibody/vaccine | patrient convalescent plasma-resistant |
| Transmissibility |
- |
| Transmission mechanism | - |
| Pathogenicity |
- |
| Pathogenicity mechanism | - |
| Immune escape mutation | Yes |
| Immune escape mechanism | - |
| RT-PCR primers probes | - |
Protein detail:
| Protein name | Spike glycoprotein |
| Uniprot protein ID | P0DTC2 |
| Protein length | 1273 amino acids |
| Protein description | Spike protein is one of the structural proteins of SARS-CoV-2. The monomeric protein consists of one large ectodomain, a single-pass transmembrane anchor, and a short intracellular tail at C-terminus. It encompasses 22 glycosylation sites. S protein cleaves into two subunits namely S1 and S2 following receptor recognition. Receptor Binding Domain (RBD) in S1 subunit plays a major role in ACE2 receptor binding. |
Literature information:
| Pubmed ID | 34171266 |
| Clinical information | No |
| Disease | - |
| Published year | 2021 |
| Journal | Cell Host & Microbe |
| Title | SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity |
| Author | Chihiro Motozono, Mako Toyoda, Jiri Zahradnik, Akatsuki Saito, Hesham Nasser |
| Evidence | Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. |