AVM v1, released 02-OCT-22

A manually curated database of aerosol-transmitted virus mutations, human diseases, and drugs

Mutation detail:


Mutation site S220T
Virus Influenzavirus A H1N1
Mutation level Amino acid Level
Gene/protein/region type HA
Gene ID 23308115
Country -
Mutation type nonsynonymous mutation
Genotype/subtype/clade -
Sample cell line
Variants -
Viral reference sequence EU199250.1
Drug/antibody/vaccine -
Transmissibility -
Transmission mechanism -
Pathogenicity -
Pathogenicity mechanism -
Immune escape mutation -
Immune escape mechanism -
RT-PCR primers probes -

Protein detail:


Protein name Hemagglutinin
Uniprot protein ID C3W627
Protein length 566 amino acids
Protein description The HA protein is translated as an uncleaved HA0 precursor protein, folded as a trimer, and glycosylated and acylated. The HA protein binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization either through clathrin-dependent endocytosis or through clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.

Literature information:


Pubmed ID 21935413
Clinical information No
Disease -
Published year 2011
Journal PLoS One
Title Genetic Structure of Human A/H1N1 and A/H3N2 Influenza Virus on Corsica Island: Phylogenetic Analysis and Vaccine Strain Match, 2006-2010
Author Alessandra Falchi,Jean Pierre Amoros,Christophe Aren,Jean Arrighi,Francois Casabianca
Evidence The A/H1N1 2009 (A/H1N1pdm) strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E.